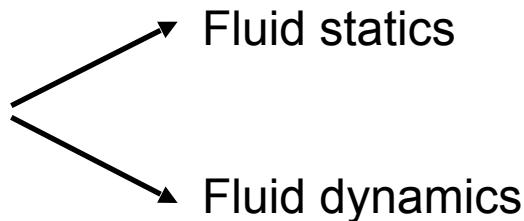

Fluids mechanics

Fluid mechanics is the part of applied mechanics concerned with the behavior of liquid and gases at rest and motion

Basic characteristics of fluids

Solids	⋮⋮⋮	Densely spaced molecules	→	High intramolecular cohesive forces
Liquids	⋮⋮⋮	Less densely spaced molecules	→	Low intramolecular cohesive forces Take the shape of the container
Gases	⋮⋮⋮		→	No intramolecular cohesive forces Fill any container volume they are placed


A fluid is defined as a substance that deforms continuously when acted on by a shearing stress of any magnitude

Analysis of Fluid Behavior

Apply:

- Newton's laws
- Conservation of energy
- 1st and 2nd law of thermodynamics

Fluid problems:

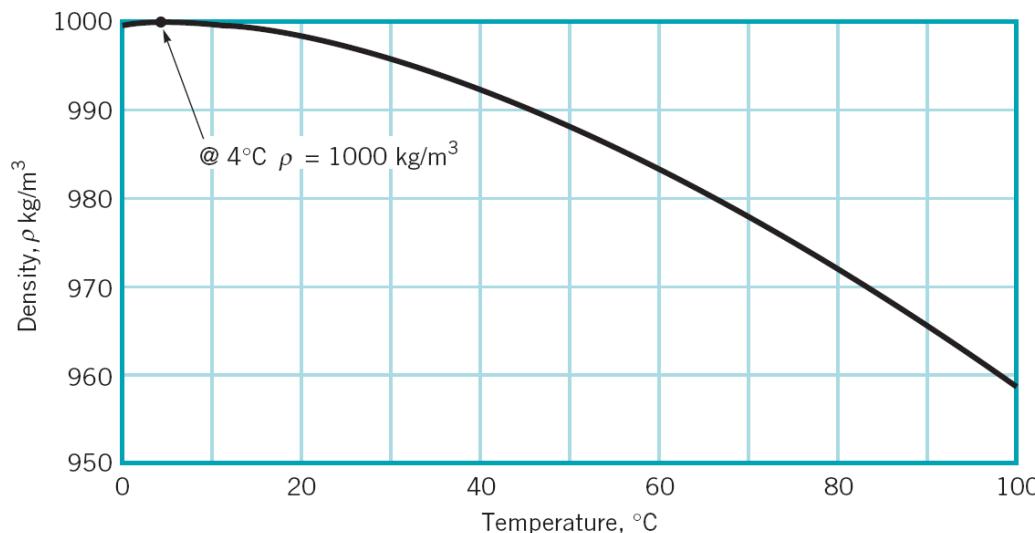
To study fluids we need to know the fluid properties

Fluid properties

Density $\rho = \frac{\text{mass}}{\text{volume}}$

[Kg/m³]

Specific volume $v = \frac{1}{\rho}$

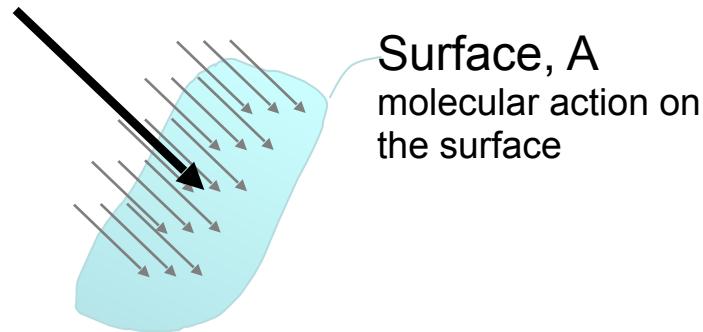

[m³/kg]

Specific weight $\gamma = \rho \cdot g$

[N/m³]

Specific gravity $SG = \frac{\rho}{\rho_{H2O@4^\circ C}}$

Measures of mass and weight



Density of water as a function of temperature.

Pressure

Define pressure: $P = \frac{F}{A}$

Resultant force, F

Units of pressure: N/m² or Pa

Absolute pressure: relative to absolute vacuum. Notation: (abs)
Example: $P_{atm} = 101 \text{ kPa}$ (abs)

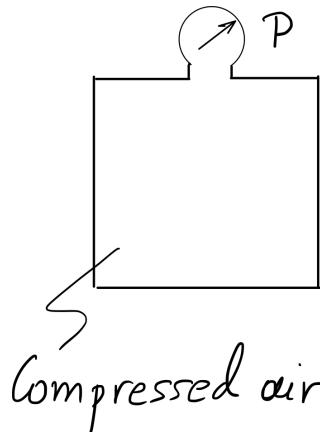
Gage pressure: relative to local atmospheric pressure
Example: $P_{blood} = 100 \text{ mmHg} = 13.3 \text{ kPa}$

Ideal gas law

Liquids:

- fairly incompressible
- density changes little with pressure and temperature

Gases:


- highly compressible
- density changes are related to pressure and temperature through the equation:

$$P = \rho RT \quad (\text{Ideal gas law})$$

P	absolute pressure
ρ	density
R	gas constant
T	absolute temperature

$$R = 286.9 \frac{J}{kg \cdot K}$$

Example

$$m = 5 \text{ kg}$$

$$T = 80^\circ\text{C}$$

$$P = 300 \text{ kPa}$$

What is the volume
of the tank?

Solution:

$$\text{Density, } \rho = \frac{\text{mass}}{\text{volume}} = \frac{m}{V} \Rightarrow V = \frac{m}{\rho}$$

Estimate ρ using the Ideal Gas Law:

$$\rho = \frac{P}{RT} = \frac{(300 + 101) \times 10^3 \text{ N/m}^2}{(286.9 \frac{\text{J}}{\text{kg K}}) \times (80 + 273) \text{ K}}$$

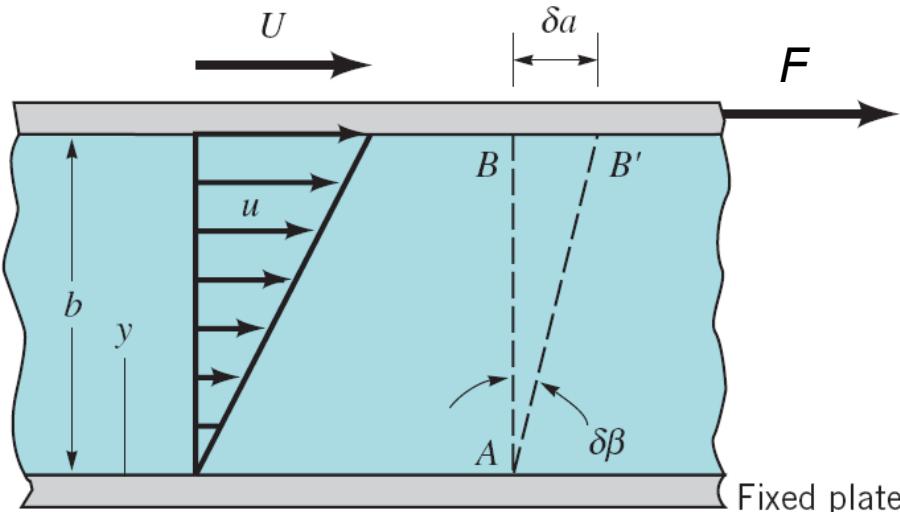
$$\Rightarrow \rho = 3.96 \text{ kg/m}^3$$

$$\text{Hence, } V = \frac{5 \text{ kg}}{3.96 \text{ kg/m}^3} = 1.26 \text{ m}^3$$

Fluidity

The behavior of a flowing fluid depends on various fluid properties. Viscosity, one of the important properties, is responsible for the shear force produced in a moving fluid.

Although the two fluids shown look alike (both are clear liquids and have a specific gravity of 1), they behave very differently when set into motion. The very viscous silicone oil is approximately 10,000 times more viscous than the water


No-slip condition

As a fluid flows near a solid surface, it "sticks" to the surface, i.e., the fluid matches the velocity of the surface. This so-called "no-slip" condition is a very important one that must be satisfied in any accurate analysis of fluid flow phenomena.

Dye injected at the bottom of a channel through which water is flowing forms a stagnant layer near the bottom due to the noslip condition. As the dye filament is moved away from the bottom, the motion of the water is clearly apparent. A significant velocity gradient is created near the bottom.

Parallel plate experiment

Force balance on top plate:

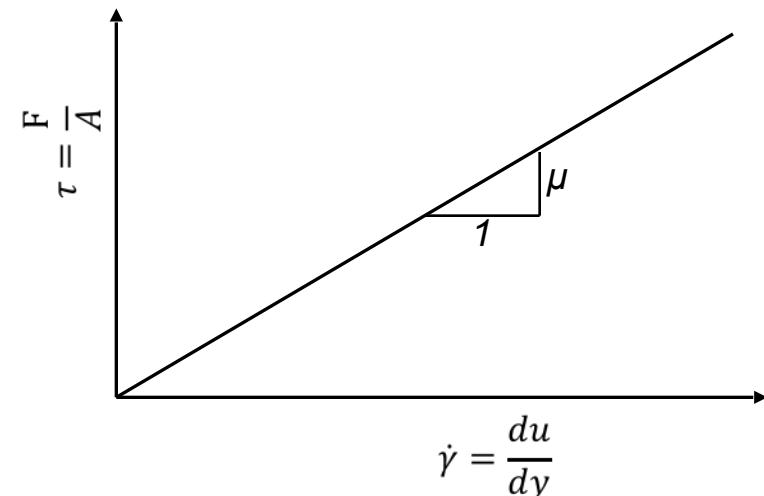
$$F = \tau \cdot A$$

Experiments:

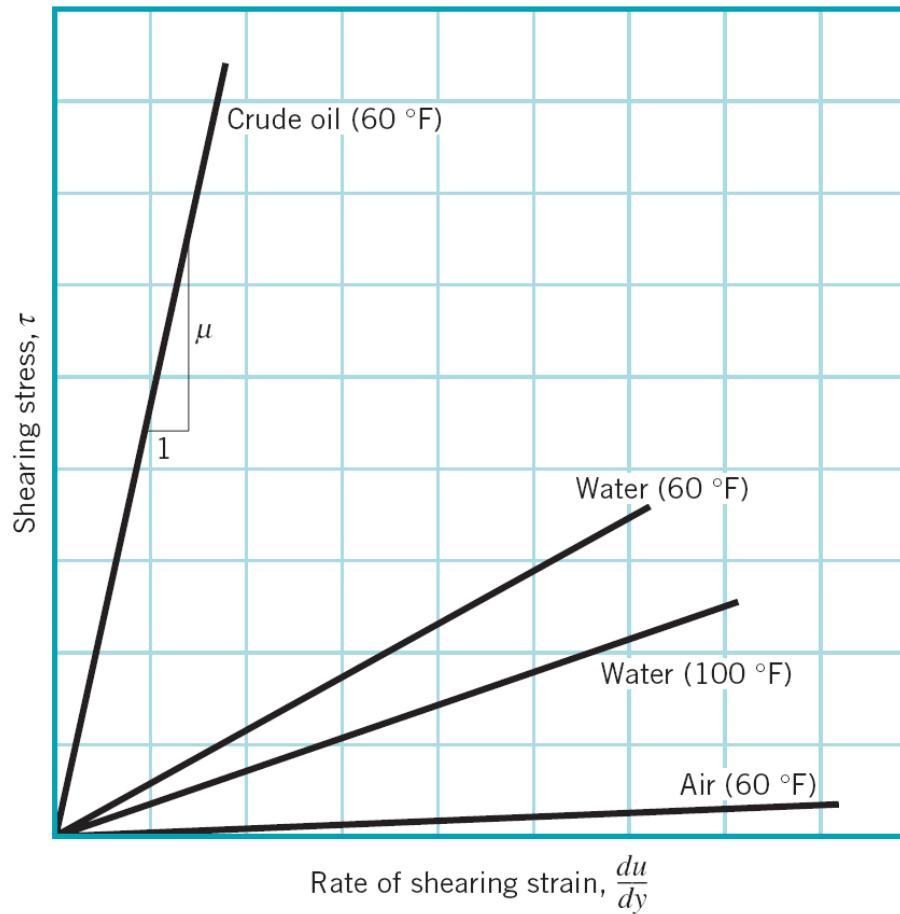
$\uparrow F \rightarrow \uparrow U$ proportionally $\rightarrow \uparrow \dot{\gamma}$ proportionally

Kinematics:

$$\tan \delta\beta \approx \delta\beta = \frac{\delta\alpha}{b} = \frac{U \cdot \delta t}{b} \Rightarrow \frac{\delta\beta}{\delta t} = \frac{U}{b}$$

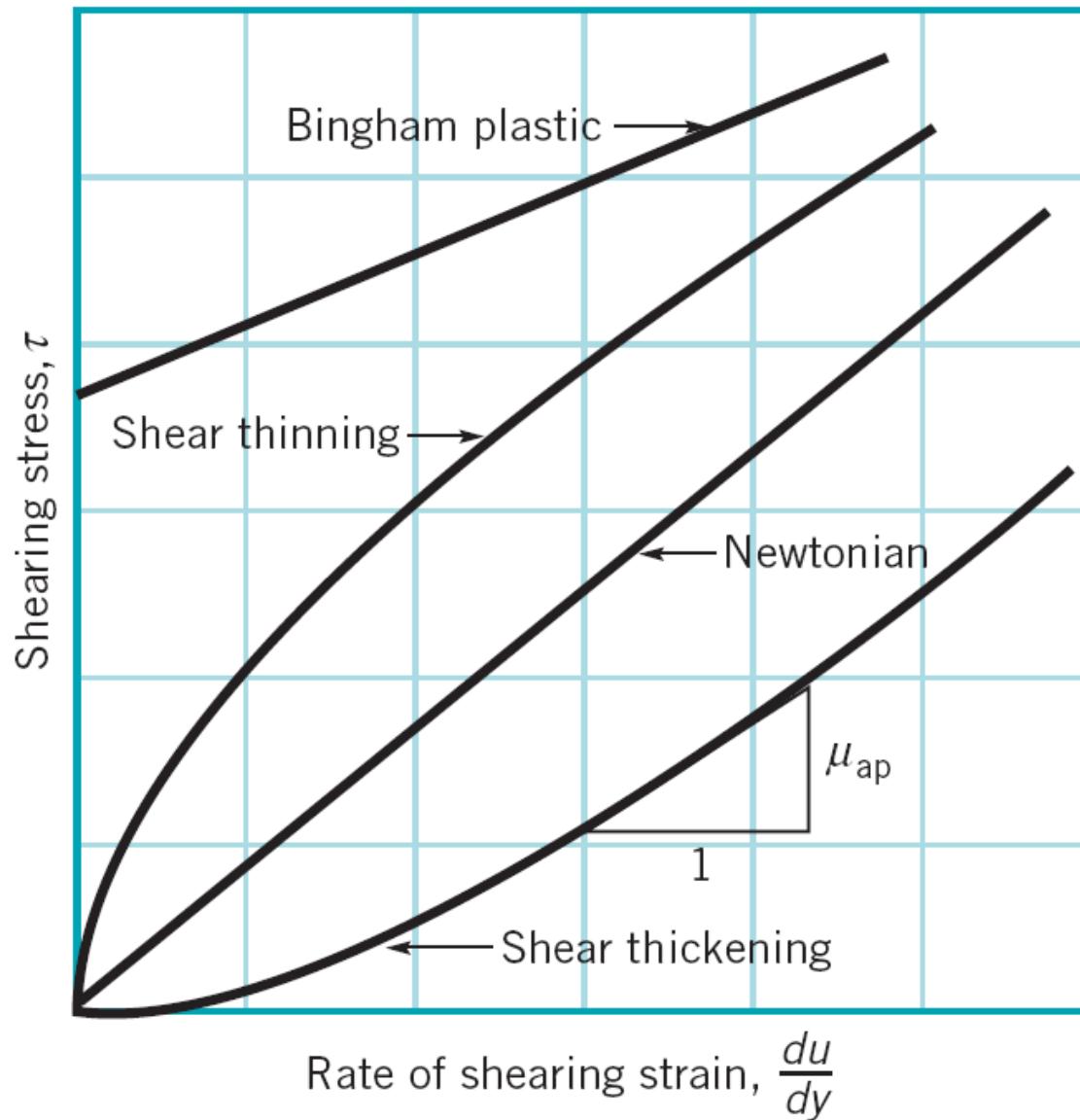

Velocity gradient:

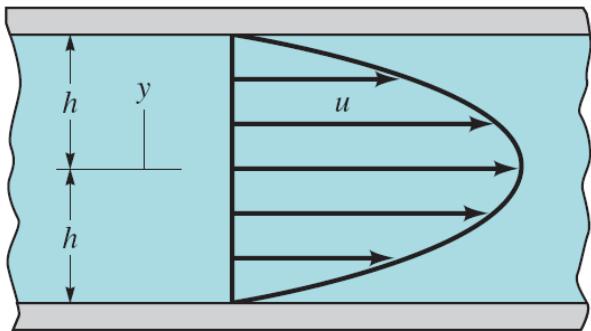
$$\frac{du}{dy} = \frac{U}{b}$$


Rate of shearing strain:

$$\dot{\gamma} = \lim_{\delta t \rightarrow 0} \frac{\delta\beta}{\delta t} = \frac{U}{b} = \frac{du}{dy}$$

→ $\tau = \mu \frac{du}{dy}$


Example of common Newtonian fluids


Newtonian fluids: viscosity does not depend on shearing rate

Viscosity does **not** depend on **pressure**
But it does **depend strongly on temperature**

Examples of common non-Newtonian fluids

Example: Flow between two parallel plates

$$\begin{aligned}\mu &= 0.05 \text{ Ns/m}^2 \\ V &= 4 \text{ m/s} \\ h &= 15 \text{ cm}\end{aligned}$$

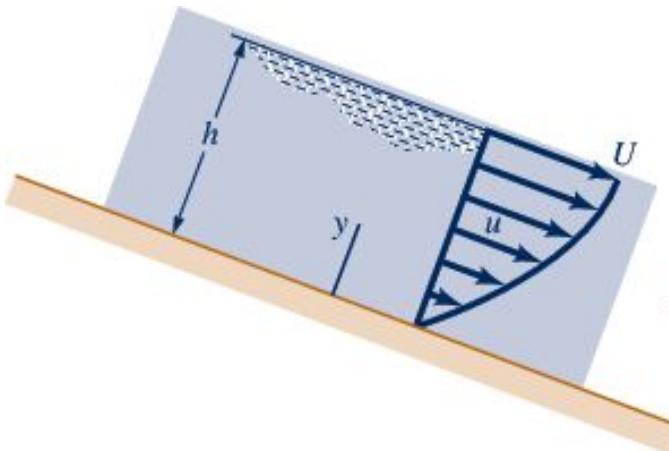
$$u = \frac{3V}{2} \left[1 - \left(\frac{y}{h} \right)^2 \right]$$

$$\tau = \mu \frac{du}{dy}$$

$$\frac{du}{dy} = - \frac{3V}{h^2} y$$

a) Bottom wall: $y = -h$

$$\Rightarrow \frac{du}{dy} = \frac{3V}{h}$$


$$\tau = \mu \frac{du}{dy} = \mu \cdot \frac{3V}{h} = 0.05 \frac{\text{Ns}}{\text{m}^2} \cdot \frac{3 \times 4 \text{ m/s}}{0.15 \text{ m}}$$

$$\Rightarrow \underline{\underline{\tau = 4 \text{ N/m}^2 \text{ or } 4 \text{ Pa}}}$$

b) Midplane: $y = 0 \Rightarrow \frac{du}{dy} = 0$

$\Rightarrow \tau_{mid} = 0$ symmetry

Example: calculation of wall shear stress

$$U = 2 \text{ m/s}$$

$$h = 0.1 \text{ m}$$

What is the magnitude and direction of the wall shear stress τ ?

$$\frac{u}{U} = 2 \frac{y}{h} - \frac{y^2}{h^2}$$

Solution

$$\tau_w = \mu \left. \frac{du}{dy} \right|_{y=0} = \mu U \left(\frac{2}{h} - \frac{2y}{h^2} \right) \Big|_{y=0}$$

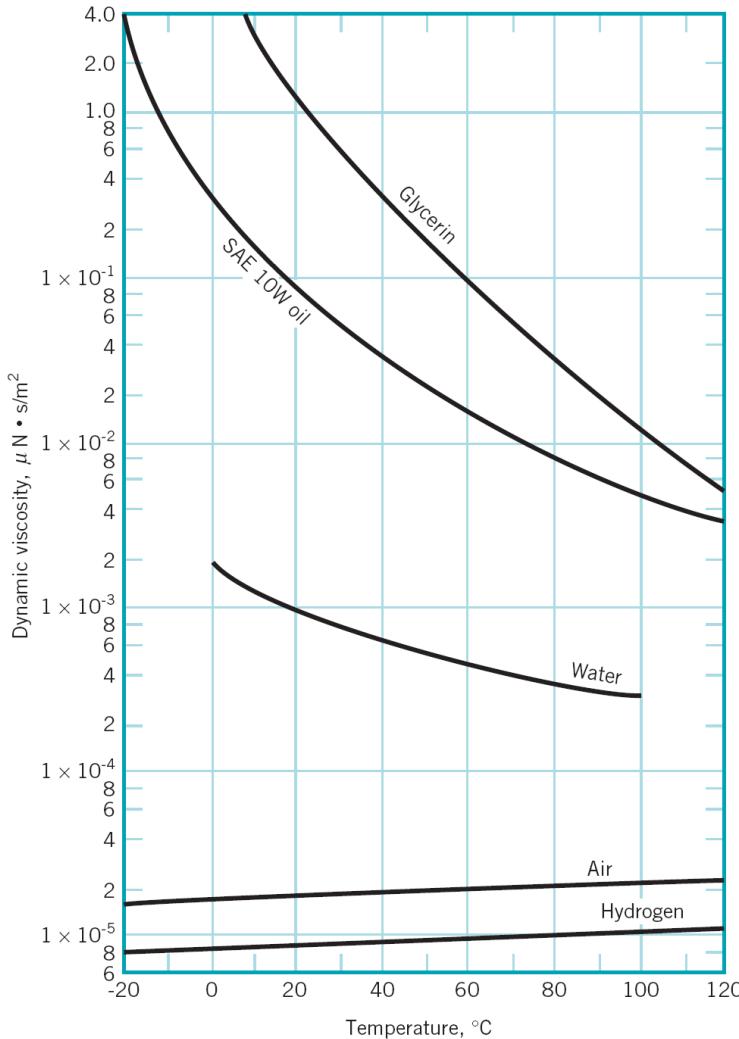
$$\Rightarrow \tau_w = \frac{2\mu U}{h} = \frac{2 \times 1.12 \times 10^{-3} \text{ N.s/m}^2 \cdot 2 \text{ m/s}}{0.1 \text{ m}}$$

$$\Rightarrow \tau_w = 4.48 \times 10^{-2} \text{ N/m}^2$$

in the direction of flow

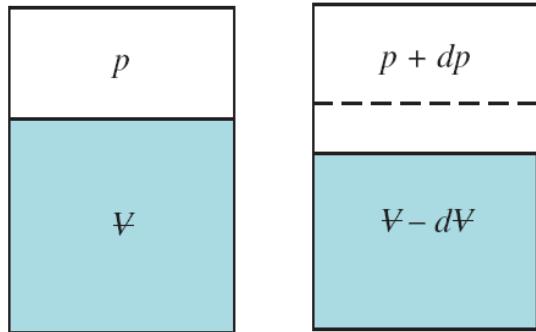
Viscosity of some common fluids as a function of temperature

For gases:


Sutherland equation

$$\mu = \frac{CT^{3/2}}{T + S}$$

For liquids:


Andrade's equation

$$\mu = De^{B/T}$$

Compressibility of Fluids

Liquids

Bulk modulus:

$$E_V = -\frac{dp}{dV/V} = \frac{dp}{d\rho/\rho}$$

Gases

Isothermal process:

$$\frac{p}{\rho} = \text{constant}$$

Isentropic process:

$$\frac{p}{\rho^k} = \text{constant}$$

$$k = c_P / c_V$$

$$R = c_P - c_V$$

c_p : specific heat at constant pressure
 c_V : specific heat at constant volume

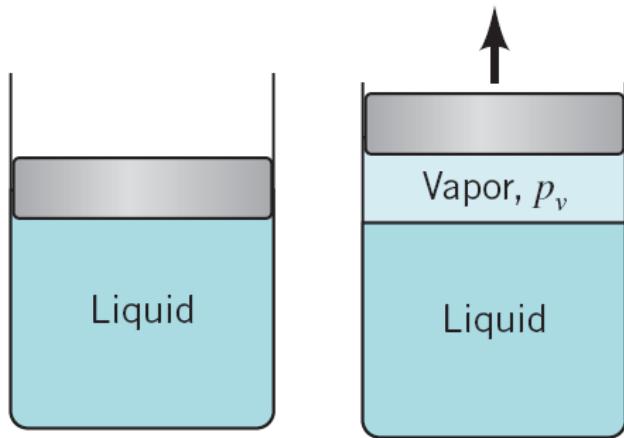
Speed of sound

Because of fluid compressibility, fluid disturbances (i.e., sound, etc.) travel at a certain finite speed, the **speed of sound, c** . The speed of sound is related to changes in pressure and density:

$$c = \sqrt{\frac{dp}{d\rho}} = \sqrt{\frac{E_v}{\rho}}$$

Changes in pressure are fast, the process is **isentropic**. For **gases**:

$$p = a \cdot \rho^k \Rightarrow \frac{dp}{d\rho} = a \cdot k \cdot \rho^{k-1} = k \frac{p}{\rho}$$
$$\frac{dp}{d\rho} = \frac{E_v}{\rho} \quad \left. \begin{array}{l} \\ \end{array} \right\} \Rightarrow E_v = kp$$

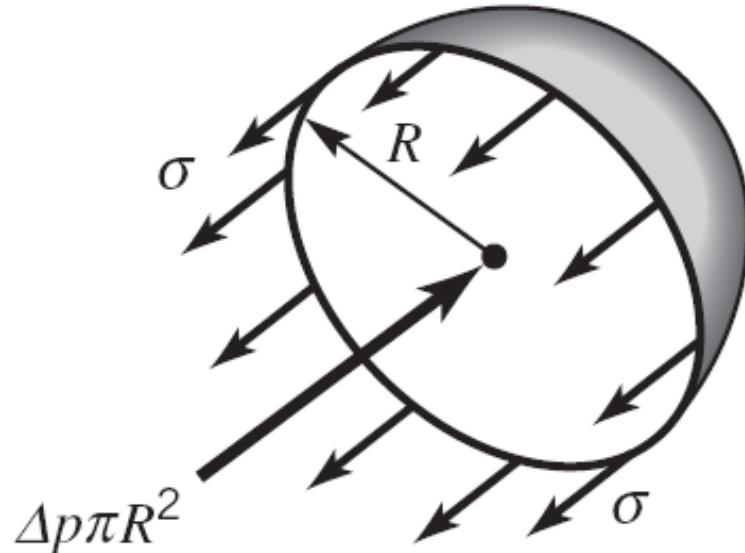

Hence,

$$c = \sqrt{\frac{kp}{\rho}} = \sqrt{kRT}$$

Air @ 15°C : $k = 1.4$ and $R = 286.9 \frac{\text{J}}{\text{kg} \cdot \text{K}}$

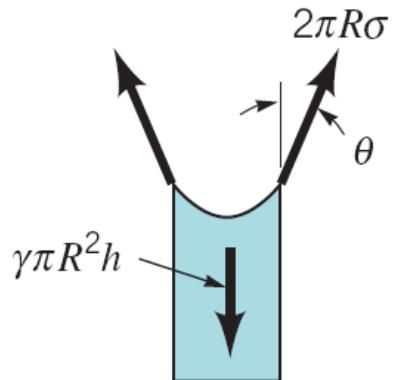
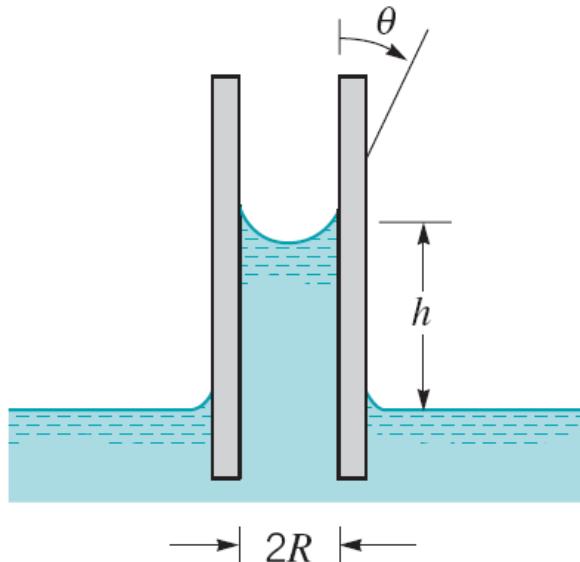
$$\Rightarrow c_{\text{air}} = \sqrt{KRT} = \sqrt{1.4 \times 286.9 \times (273 + 15)} \text{ m/s} = \underline{\underline{340 \text{ m/s}}}$$

Vapor pressure and boiling

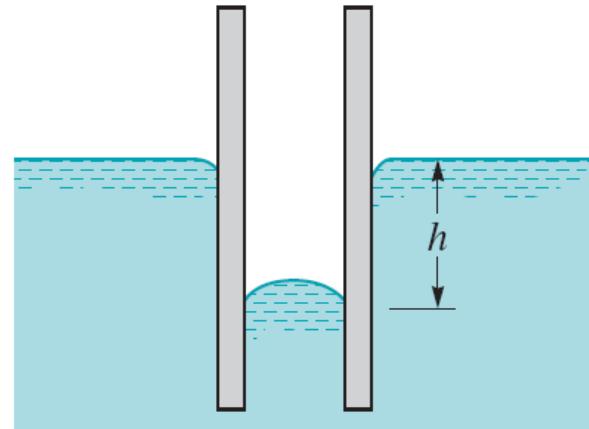

Vapor pressure depends on temperature

Boiling: formation of vapor bubbles within the fluid mass, initiated when the absolute pressure in the fluid reaches vapor pressure

To boil:



- At constant pressure, raise temperature
- At constant temperature, decrease pressure (cavitation)

Surface Tension


Equilibrium: $2\pi R\sigma = \Delta p \cdot \pi R^2 \implies \Delta p = p_i - p_e = \frac{2\sigma}{R}$

Capillary action in small tubes

Rise of column for a liquid that wets the tube.

Free-body diagram

Depression of column for a nonwetting liquid.

$$\gamma \cdot \pi R^2 \cdot h = 2\pi R\sigma \cos\theta$$

$$\Rightarrow h = \frac{2\sigma \cos\theta}{\gamma R}$$

Physical properties of liquid and gases

■ TABLE 1.3

Approximate Physical Properties of Some Common Liquids (SI Units)

Liquid	Temperature (°C)	Density, ρ (kg/m ³)	Specific Weight, γ (kN/m ³)	Dynamic Viscosity, μ (N · s/m ²)	Kinematic Viscosity, ν (m ² /s)	Surface Tension, ^a σ (N/m)	Vapor Pressure, p_v [N/m ² (abs)]	Bulk Modulus, ^b E_v (N/m ²)
Carbon tetrachloride	20	1,590	15.6	9.58 E - 4	6.03 E - 7	2.69 E - 2	1.3 E + 4	1.31 E + 9
Ethyl alcohol	20	789	7.74	1.19 E - 3	1.51 E - 6	2.28 E - 2	5.9 E + 3	1.06 E + 9
Gasoline ^c	15.6	680	6.67	3.1 E - 4	4.6 E - 7	2.2 E - 2	5.5 E + 4	1.3 E + 9
Glycerin	20	1,260	12.4	1.50 E + 0	1.19 E - 3	6.33 E - 2	1.4 E - 2	4.52 E + 9
Mercury	20	13,600	133	1.57 E - 3	1.15 E - 7	4.66 E - 1	1.6 E - 1	2.85 E + 10
SAE 30 oil ^f	15.6	912	8.95	3.8 E - 1	4.2 E - 4	3.6 E - 2	—	1.5 E + 9
Seawater	15.6	1,030	10.1	1.20 E - 3	1.17 E - 6	7.34 E - 2	1.77 E + 3	2.34 E + 9
Water	15.6	999	9.80	1.12 E - 3	1.12 E - 6	7.34 E - 2	1.77 E + 3	2.15 E + 9

^aIn contact with air.

^bIsentropic bulk modulus calculated from speed of sound.

^cTypical values. Properties of petroleum products vary.

■ TABLE 1.4

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units)

Gas	Temperature (°C)	Density, ρ (kg/m ³)	Specific Weight, γ (N/m ³)	Dynamic Viscosity, μ (N · s/m ²)	Kinematic Viscosity, ν (m ² /s)	Gas Constant, ^a R (J/kg · K)	Specific Heat Ratio, ^b k
Air (standard)	15	1.23 E + 0	1.20 E + 1	1.79 E - 5	1.46 E - 5	2.869 E + 2	1.40
Carbon dioxide	20	1.83 E + 0	1.80 E + 1	1.47 E - 5	8.03 E - 6	1.889 E + 2	1.30
Helium	20	1.66 E - 1	1.63 E + 0	1.94 E - 5	1.15 E - 4	2.077 E + 3	1.66
Hydrogen	20	8.38 E - 2	8.22 E - 1	8.84 E - 6	1.05 E - 4	4.124 E + 3	1.41
Methane (natural gas)	20	6.67 E - 1	6.54 E + 0	1.10 E - 5	1.65 E - 5	5.183 E + 2	1.31
Nitrogen	20	1.16 E + 0	1.14 E + 1	1.76 E - 5	1.52 E - 5	2.968 E + 2	1.40
Oxygen	20	1.33 E + 0	1.30 E + 1	2.04 E - 5	1.53 E - 5	2.598 E + 2	1.40

^aValues of the gas constant are independent of temperature.

^bValues of the specific heat ratio depend only slightly on temperature.